Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Saf ; 47(5): 475-485, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401041

RESUMO

INTRODUCTION AND OBJECTIVE: The European Medicines Agency (EMA) maintains a list of designated medical events (DMEs), events that are inherently serious and are prioritized for signal detection, irrespective of statistical criteria. We have analysed the results of our previously published scoping review to determine whether DME signals differ from those of other adverse events in terms of time to communication and characteristics of supporting reports of suspected adverse drug reactions. METHODS: For all signals, we obtained the launch year of medicinal products from textbooks or regulatory agencies, extracted the year of the first report in VigiBase and calculated the interval between the first report and communication (time to communication, TTC). We further retrieved the average completeness (via vigiGrade) of the reports in each case series in the years before the communication. We categorised as DME signals those concerning an event in the EMA's list. We described the two groups of signals using medians and interquartile ranges (IQR) and compared them using the Brunner-Munzel test, calculating 95% confidence intervals (95% CI) and P values. RESULTS: Of 4520 signals, 919 concerned DMEs and 3601 concerned non-DMEs. Signals of DMEs were supported by a median of 15 reports (IQR 6-38 reports) with a completeness score of 0.52 (IQR 0.43-0.62) and signals of non-DMEs by 20 reports (IQR 6-84 reports) with a completeness score of 0.46 (IQR 0.38-0.56). The probability that a random DME signal was supported by fewer reports than non-DME signals was 0.56 (95% CI 0.54-0.58, P < 0.001) and that of one having lower average completeness was 0.39 (95% CI 0.36-0.41, P < 0.001). The median TTCs of DME and non-DME signals did not differ (10 years), but the TTC was as low as 2 years when signals (irrespective of classification) were supported by reports whose average completeness was > 0.80. CONCLUSIONS: Signals of designated medical events were supported by fewer reports and higher completeness scores than signals of other adverse events. Although statistically significant, the differences in effect sizes between the two groups were small. This suggests that listing certain adverse events as DMEs is not having the expected effect of encouraging a focus on reports of the types of suspected adverse reactions that deserve special attention. Further enhancing the completeness of the reports of suspected adverse drug reactions supporting signals of designated medical events might shorten their time to communication and reduce the number of reports required to support them.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Imidazóis , Compostos de Organossilício , Humanos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Probabilidade , Comunicação
2.
Ther Adv Drug Saf ; 13: 20420986221118972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052399

RESUMO

Pharmacovigilance (PV) came suddenly into the spotlight when several new vaccines, developed as a response to the COVID-19 pandemic, received emergency authorisation and were rolled out on a large scale in late 2020. The vaccines underwent stringent clinical trials and evaluation from regulatory authorities, but with the use of novel technology and an anticipated rapid and vast deployment of the vaccines, the importance of a well-functioning international post marketing safety surveillance system was stressed. International PV stakeholders were faced with several challenges due to the extent of the global vaccination campaign. The unprecedented volume of reports of suspected adverse events following immunization has led to the development and use of new tools. Furthermore, the collaboration between various PV stakeholders was encouraged and strengthened. PV rose to the challenges posed by the currently ongoing global COVID-19 vaccination campaign and successful adaptations were made in a short period of time. However, the pandemic has not ended yet, the vaccination campaign is far from being completed, and further challenges are anticipated. Advances made during the pandemic will be important to strengthen PV in future and ensure to advance medicines' safety together. Plain Language Summary: Global safety monitoring of the COVID-19 vaccines: challenges, preparations, and outlooks Pharmacovigilance (PV) is the umbrella term for all sciences and activities relating to the detection, assessment, understanding, and prevention of adverse effects relating to medicines or vaccines. PV came into the spotlight when several new vaccines were authorised and rolled out as a response to the COVID-19 pandemic.The anticipated extent of the global vaccine rollout stressed the importance of a well-functioning safety surveillance system and international collaborations between patients, health care workers, vaccine producers, regulatory authorities, and PV centres.The identification and communication of potential safety concerns showed that adaptations to PV processes made in a short period of time as well as international collaborations were successful. However, it is important to learn from experiences made so far and to make sure the positive advances are maintained in the future to advance medicines' safety together.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...